智能体

智能体专题报告:智能体时代来临,具身智能有望成为最佳载体

智能体时代来临,小型端侧设备无法消化大模型大参数,而具身智能则有望成为最佳载体。从具身智能训练层面看,仿真软件可为大模型提供海量、低成本数据,解决真实数据高成本、难收集的问题,仿真软件有望实现大范围应用。相比于刚性物体的仿真,柔性、流体的仿真技术壁垒更高,具备相关技术积累的厂商优势突出。从具身智能商业化路径来看,我们认为目前商业落地途径主要包括三种:(1)通用机器人路径对于资金和技术要求较高,目前特斯拉等行业巨头正加速布局。(2)纯软件路径的核心是设计通用的操作系统使多个硬件厂商共享同一套软件,英伟达 Project GR00T 以及华为鸿蒙操作系统核心合作厂商有望深度受益。(3)垂直领域软硬一体路径能够使公司形成数据壁垒,细分领域龙头具备核心优势。

AI Agent(智能体)行业专题报告:从技术概念到场景落地

思维链铸就智能体,多体交互拓展应用:早在上世纪 50 年代,阿兰图灵把“高度智能有机体”扩展到了人工智能。如今随着大模型的快速发展,这个概念又被重新拾起。大模型成为了智能体目前最完美的载体,有望完成从概念到实际应用的蜕变。用户在 Agent(智能体)模式中给 AI 设臵目标和身份,并提供 Prompt(提示词)。AI 自主拆分任务、使用工具、完成工作,用户仅负责设立目标、提供工具资源和监督结果。 赋能两类实体领域,成本与效益的博弈:AI Agent 目前的应用大多都在概念层面,但随着大模型竞争加快、政策鼓励研发投入、更多企业参与 AI 研究等因素,应用层面的 AI Agent 推进速度加快。智能体大致可以分为六类,根据他们被设计出的特点,可以作用在不同的应用领域上。不同类别的智能体给予应用层面上更多研发方向,像目前关注度较高的自动驾驶技术、智能电网控制、能源管理等都能被垂类智能体覆盖。结合多模态大模型,自动化和情感需求类智能体已落地。但商业化智能体仍需考虑成本问题,由于智能体之间的交互过程可能出现错误循环且输出结果不一定符合需求,tokens 成本远高于普通 LLMs。
加载更多