StockFormer

VIP免费

量化专题报告:StockFormer,基于Transformer的强化学习模型探究

强化学习通过训练智能体直接输出投资决策。强化学习是一种机器学习方法,通过与环境的交互来训练智能体,使其在不同状态下采取能够最大化累积奖励的行动。在强化学习中,智能体(Agent)通过与环境的互动不断学习,通过奖励和惩罚来调整其策略,以便在长期内获得最大回报。在股票市场中,强化学习可以通过市场状态的输入,不断调整交易策略,最大化长期的投资回报。强化学习在金融领域中的应用主要在状态输入,奖励函数及优化算法三个方面进行了创新。 SAC 强化学习加入多项改进以避免模型过拟合。在 SAC 中,价值网络是一个双 Q 网络(Double DQN),即使用两个独立的 Q 网络的同时对目标函数进行估计,在目标值计算时选择最小的一个,从而降低 Q 值的高估风险,防止模型陷入局部最优或者过拟合。此外,SAC 在策略优化过程中引入了熵正则化项,熵正则化项的引入使得策略在早期阶段保持一定的随机性,避免策略网络和价值网络的学习模式过于重合以陷入局部最优,从而提高整体的策略探索能力。对于熵正则项,SAC 还引入了自适应熵系数α,通过优化熵系数来自动调整策略的探索程度,使得模型能够根据当前的训练情况动态调整探索与开发的平衡。
加载更多