思维链铸就智能体,多体交互拓展应用:早在上世纪 50 年代,阿兰图灵把“高度智能有机体”扩展到了人工智能。如今随着大模型的快速发展,这个概念又被重新拾起。大模型成为了智能体目前最完美的载体,有望完成从概念到实际应用的蜕变。用户在 Agent(智能体)模式中给 AI 设臵目标和身份,并提供 Prompt(提示词)。AI 自主拆分任务、使用工具、完成工作,用户仅负责设立目标、提供工具资源和监督结果。
赋能两类实体领域,成本与效益的博弈:AI Agent 目前的应用大多都在概念层面,但随着大模型竞争加快、政策鼓励研发投入、更多企业参与 AI 研究等因素,应用层面的 AI Agent 推进速度加快。智能体大致可以分为六类,根据他们被设计出的特点,可以作用在不同的应用领域上。不同类别的智能体给予应用层面上更多研发方向,像目前关注度较高的自动驾驶技术、智能电网控制、能源管理等都能被垂类智能体覆盖。结合多模态大模型,自动化和情感需求类智能体已落地。但商业化智能体仍需考虑成本问题,由于智能体之间的交互过程可能出现错误循环且输出结果不一定符合需求,tokens 成本远高于普通 LLMs。
人工智能发展迅猛,智能体商业化落地:未来多方面推动人工智能发展,应用级别智能体有望快速落地。国内各地相继出台关于人工智能的发展政策,推动其为重要的研究方向。预计 2026 年国内人工智能市场规模超过 260 亿美元,全球人工智能市场规模 2025 年超 6 万亿美元。海外以美国为例,相关政策出台时间较早,人工智能领域发展更加成熟,许多智能体应用已在服务各类企业。并且美国有意与人工智能强国组成战略伙伴,共同发展 AI 科技。智能体发展能推动政府、金融、制造、能源、医疗、零售等行业的智能化应用向多模态和跨模态转变。