随着人工智能技术的迅猛发展,它已成为全球科技革命的核心驱动力。特别是 2017 年Transformer模型提出后,人工智能大模型以超凡的性能和无限的可能性,迅速成为科技界的焦点。2023 年初,GPT-4的问世更是在全球范围内引起了巨大反响,标志着大模型技术首次进入公众视野。
随着大模型技术的不断演进,其处理能力已从单一的文字信息扩展至图像、语音等多模态数据,多模态大模型进入快速发展阶段。它们不仅在日常生活中的辅助作画、图片解读等场景中展现出应用潜力,更在视频数据分析、多目标识别等生产领域发挥着重要作用。目前典型的多模态大模型有国外的GPT-4Vision、Gemini,国内的文心一言、讯飞星火、智谱清言等。这些大模型算法各异,在不同的任务场景下各有优劣,如何对这些多模态大模型开展客观、科学的评测,评估特定任务场景下的最优选择,对大模型的研发迭代以及应用落地都具有重要意义。
相比于语言类大模型,多模态大模型具备对文本、图像、视频和音频等数据进行综合处理的能力,在生产生活领域中具有广泛的应用前景。同时,多模态大模型评测面临评测数据更多样、评测任务更丰富、评测方式更复杂、评测成本更昂贵等挑战。如何应对上述挑战,构建全面、客观的多模态大模型评测体系,成为业界关注的热点问题。目前,部分业界企业和研究机构,如微软、谷歌、智源研究院、上海AI实验室、腾讯优图实验室、厦门大学、南洋理工大学等,发布了相关论文、评测报告,从性能、参数量等维度对业界主流多模态大模型进行了评测,并基于评测结果形成了榜单,如MMbench、MME等。为提升多模态大模型的实际应用效果,推动大模型与生产生活的快速结合,有必要从用户视角出发,构建一套客观全面、公平公正的多模态大模型评测体系。