从kimi(月之暗面)到智谱,从豆包(字节)到DeepSeek,中国基础大模型一直处于快速演进之中,演进的主旋律则体现为性能提升和成本降低,与计算机历史上PC、互联网的发展逻辑类似。我们总结了以下三个关键词:
关键词1:低成本。与暴力美学的大模型相对应的就是高成本,动则数百上千万元的成本投入在很大程度上制约了下游需求的释放,在中国当前的宏观环境下这种挑战更为明显。DeepSeek带来的成本指数级下降,将会大大加速AI应用的落地进程。
关键词2:开源。伴随闭源基础大模型能力不断提升之后,是否会向上侵蚀应用市场成为了市场的一种担忧。而开源体系大大降低这种可能:1)开源体系需要生态繁荣,基模厂商与应用厂商是合作关系;2)对于应用厂商而言,开源大模型的可获得性、可把握性更强,更容易基于此构建自己的垂直模型和能力。
关键词3:中国。中国具有广阔的应用场景,但一方面接入海外OpenAI模型存在一定的障碍,另一方面中国的基础大模型能力存在差距。DeepSeek缩小了这种能力差距,一定程度上补齐了中国AI应用的底座短板。